第19章 万物密码(3/6)
,最终屏幕上会出现斑马线状的干涉条纹。托马斯·杨通过实验证明了光是波。
然而,一百年后,英国物理学家泰勒爵士再次进行杨氏双缝干涉实验时,出现了诡异的情况。泰勒降低了实验光源强度,每次仅释放一个光子,任何时刻双狭缝最多只能通过一个光子,实验进展缓慢。但一段时间后,探测板上依然出现了波状的干涉条纹,这表明光子能自己与自己发生干涉,即一个光子有可能同时穿过两条缝。
为弄清楚原因,科学家们想在双缝板与探测板之间加观测仪器,观察光子到底从哪条缝通过。结果令人震惊:开启观测装置时,光表现出粒子性质,观测板上显现两条竖直线;关闭观测装置,光又展现出波动特性,干涉条纹再次清晰可见,也就是说光的性质取决于观测装置是否开启。
科学家们还改变了开启观测仪器的步骤,在光子释放后再随机决定是否开启观测仪器,多次尝试后,光依然有时表现出波状,有时表现出粒子状。这种波状和粒子状都存在的现象被称为波粒二象性。截至目前,光到底是什么仍没有准确答案,直到一位重要人物出现,人们才开始重新定义光。
1905年,26岁的爱因斯坦有三项重大发现:狭义相对论、布朗运动和光电效应。他认为光至关重要且光速恒定,提出质能方程e=c2,表明光、能量和质量可相互转换,还提出光速不变原理。同时,他发现了光电效应,并因此在1921年获诺贝尔物理学奖。
光电效应指在光照射下,某些物质内部电子被光子激发形成电流的现象。其发生机制受光线频率影响,特定频率以上的光照射金属能打出电子,低于该频率的光无论照射多久都不行。按照经典物理学牛顿定律,能量应是连续的,但光电效应并非如此。
爱因斯坦解释说光具有粒子性,是以光速运动的粒子流,光的本质不连续,光子能量取决于光线频率,频率越高,光子能量越大,传递给电子的能量也越大;若光子能量无法满足电子逃离金属的最低要求,电子就会被束缚在金属内,如蓝光频率比红光高,蓝光光子能量更大。
光电效应表明宏观物质世界是非线性的,微观领域的粒子等不遵循经典物理学牛顿力学定律,背后是神秘的微观量子世界。这一效应引发了物理
本章还未完,请点击下一页继续阅读>>>